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ABSTRACT: This is a tutorial on the relations between population data and the rates of growth
that are calculated from the data. For the calculation of rates of growth, discrete and contin-
uous compounding will be compared so that the reader can see the reasons for using the
mathematics of continuous compounding, which is the mathematics of exponential growth.
Some properties of exponential growth are developed. Semi-logarithmic graphs will be dis-
cussed as a device for representing the size of growing populations and for analyzing the
nature of the growth. Illustrative examples will be worked out in order to emphasize applica-
tions and utility.

DEFINITIONS

If a quantity (such as a population) changes (increases or decreases) by
a fixed amount per unit time (for example, ten units per year), the guantity
is said to be changing linearly or arithmetically. If the quantity is increas-
ing, we have growth; if it is decreasing, we have decay. An example
would be a population that increases (or decreases) by 100 persons each
year.

If a quantity changes (increases or decreases) by a fixed fraction per
unit time, (for example, ten percent per year), the quantity is said to be
changing exponentially or geometrically. An example would be a popula-
tion that increases (or decreases) by five percent each month.

If a quantity is always increasing (or decreasing), but the changes do
not have the regularity of either linear or exponential change, the growth
(or decay) is said to be monotonic or continuous. Linear growth or decay,
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and exponential growth or decay are monotonic. Monotonic growth or
decay need not be either linear or exponential.

We want to discuss exponential changes, (growth and decay).

We will define the symbol k to be the fractional change per unit time
and the symbol R to be the percent change per unit time which we will
call the growth rate. Thus

(1) R = 100 k

If k = + 0.03 per year, then we are dealing with a growth rate of R = 3
percent per year. ‘

If k is positive and constant, one has exponential growth; if k is nega-
tive and constant, one has exponential decay.

It is unfortunate that the term “exponential growth” is interpreted by
some to be a rare and exotic form of growth that is different from the
“steady growth” which is so often in the news. We will define “steady
growth” to be synonymous with “exponential growth” and “geometric
growth.”

It is incorrect to use the term “logarithmic growth” to describe expo-
nential growth. The book, The Logarithmic Century, (Lapp, 1973) should
have been called The Exponential Century. It shows many examples of
quantities that have been growing exponentially for long periods of time.

THE GROWTH OF POPULATIONS

Populations tend to change exponentially. This can be seen from the
units that are used to express birth and death rates. The world birth rate is
approximately 27 per thousand each year and the death rate is approx-
imately 10 per thousand each year. The “27 per thousand” expresses the
fractional change and the “each year” converts this to the fractional change
per unit time. The difference between these two numbers is the increase of
17 per thousand each year, or 1.7 per hundred each year. This means that
the growth rate is R = 1.7 percent per year, or k = + 0.017 per year.

“Steady growth” occurs in a period of time if the value of k is positive
and constant throughout the period. Very often one deals with growth that
is continuous but which is characterized by a changing growth rate. This
can be represented in two ways.

a) If we have a changing growth rate during a period of time, the
growth may be represented by an average growth rate which is charac-
terized by a constant value of k, or
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b) we can tabulate a series of values of k as k changes with time
throughout the period. If k is positive and is increasing with time, we have
growth that is faster than exponential, and if k is positive but decreasing
with time, we have growth that is slower than exponential. If k decreases
to zero and becomes negative, the changes switch from growth to decay.

In addition to populations, things that tend to grow exponentially in-
clude: money in an interest-bearing savings account, the cost of living, the
number of fission events that take place with each generation of neutrons
in a nuclear explosion, the number of pages of articles published annually
in scientific journals, and the number of. kilometers of highway in the
United States (Bartlett, 1969). Things that tend to decay exponentially in-
clude the value of the dollar, the number of undecayed radioactive atoms
in a sample, the amplitude of vibrations of oscillating objects, and the
charge on a capacitor that is discharging through a resistor.

EXAMPLE NO.1
Here are recent data for the population of the United States

1990 248.71 million
1980 226.55 million
Increase in the 1980s  22.16 million

The average of the starting and ending populations of the decade is,
(248.71 + 226.55) /2 = 237.63 million
There are three ways we can express the fractional increase in the decade.

(22.16 / 226.55) = 0.0978 or 9.78%
(22.16 / 237.63) = 0.0933 or 9.33%
(22.16 / 248.71) = 0.0891 or 8.91%

These results can be expressed by saying that the population increase in
the decade was 9.78% of the population at the start of the decade; the
increase was 9.33% of the average of the populations at the start and the
end of the decade; or the increase was 8.91% of the population at the end
of the decade. We can divide these numbers by the ten years of the decade
to get 0.978%, 0.933%, and 0.891%. Which, if any, of these numbers is
the “average annual growth rate” for the decade ? To answer this question,
we must examine the arithmetic of steady (exponential) growth.
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DISCRETE COMPOUNDING

The arithmetic of population growth is the same as the arithmetic of
the growth of money in a savings account because of the compound inter-
est that is added to the account. (After one of my talks on this subject, a
banker in the audience said to me that he was completely familiar with the
growth of money due to the arithmetic of compound interest, but he had
never realized that this arithmetic also applied to the growth of popula-
tions.) ‘

If one leaves money untouched in a savings account, the interest is
added at regular intervals and the interest is calculated as a fixed fraction
(say 5%) of the money in the account. Thus the fractional growth rate, k, of
the money in the account is a constant 0.05 per year, (5% per year). This
guarantees that the money in the account will grow steadily (exponen-
tially). The speed with which the money grows depends on two things: the
interest rate and the frequency with which the interest calculations are
made. The importance of the interest rate is obvious; the importance of the
frequency of compounding (calculating the interest) is smaller and is less
obvious. ~

The effect of the frequency of compounding is illustrated in Fig.1. The
figure deals with $100 that is placed in a savings account for five years at
an annual interest rate of 12%. In Fig.1(a) we see the way in which the
dollars increase when the 12% interest is calculated annually at the end of
each year. The number of dollars increases in a step fashion, and the dol-
lars in one step are found by multiplying the dollars on the previous step
by 1.12. The compounding done at the end of the fifth year leaves
$176.23 in the account. In Fig.1(b) we start with the same $100, but the
12% annual interest is compounded now as 6% twice each year. There are
now twice as many steps, and the dollars in one step are found by multi-
plying the dollars on the previous step by 1.06 . The compounding done at
the end of the fifth year leaves $179.08 in the account. The 12% could be
compounded as 1% every month. In this case, the amount at the end of
the fifth year is $181.67. The 12% could be compounded at the daily rate
of (12 / 365)% to give $182.19 at the end of five years.

If we want to apply calculations of this type to the calculation of the
growth of populations, we see at least three problems.

(1) Populations do not grow stepwise as do the dollars in Figs.1(a) and
(b); .

(2) The size of the account at the end of five years depends on the fre-
quency of compounding, yet we do not know what frequency of com-
pounding would be appropriate for use in our population calcula-
tions;
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FIGURE 1. Part (a) shows the growth of $100 at an annual interest rate of
12%, compounded once a year for five years. Part (b) shows the growth
of $100 at an annual interest rate of 12% compounded twice a year for
five years. Part (c) shows the growth of $100 at an annual interest rate of

12% compounded continuously for five years. Part (c) is the graph of
steady or exponential growth.
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(3) It would be difficult to calculate the population increase in an interval
such as 3.67 years if we were compounding annually or semi-annu-
ally.

CONTINUOUS COMPOUNDING

As one can see from Fig.1(a) and (b), the more frequent the com-
pounding, the smaller are the steps in the graph that represents the growth.
In the limit, we can compound continuously, and the steps become so
small that they merge into a smooth curve. The equation for this curve is

(2) ’ Nz — N] ek(lz - t)
In this equation,

N, is the size of the growing quantity at time t;,
N, is the size of the growing quantity at time t,,
k is the fractional increase in N per unit time, and
e = 2.71828 . . . which is the base of natural logarithms.

This equation is most often written in the form
(3) N = Nye"

In this form, the growing quantity has the size N at the time t, and it had
the size N = N, at the time t = 0. The quantity t is a time interval.

It is important that the units of time in k and t be the same. If k has the
units per month then the units of t must be months. Figure 1(c) shows the
growth of $100 in a savings account at an annual interest rate of 12%
compounded continuously for five years. It is calculated from Eq.3,

N = 100 %'

where t is the time in years. At the end of five years, t has the value 5, and
N is calculated to have the value $182.21.

To do these calculations requires a small hand-held “scientific calcu-
lator” that has keys for the functions used by scientists and engineers. In
particular the calculator should have keys labeled “e*”, “y*”, “In x” (or
“In”), and “log x” (or “log”). These calculators can be purchased for as
little as $20.
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Continuous compounding eliminates the three problems that arise
with discrete compounding, so we will use the arithmetic of continuous
compounding to describe the exponential, or steady, growth of popula-
tions.

THE AVERAGE GROWTH RATE

If we know the population N, at the start of an interval of time, and
the population N at the end of the interval, we can define the average rate
of growth in the interval as that rate of growth, and the corresponding
constant value of k, that lets a quantity of size N, grow to the size N in the
given time interval.

If we know N and N, we can calculate the average growth rate. To do
this, we must solve Eq.3 for k.

(4) k= (1/8InN/N)

In this equation, “In(N / N,)” means the natural logarithm of the quotient N
divided by N,. We can rearrange Eq.4 to find the time for N to grow from
N, to N for a given k. '

(5) t = (1/k) In(N/N,)

BACK TO EXAMPLE NO.1

We will use Eq.4 to calculate the average growth rate of the popula-
tion of the United States in the time interval t = 10 years between 1980
and 1990.

Il

(1/10) In (248.71 / 226.55)

(1/10) In (1.09781 . . )

(1/10) x 0.0933218 . . .

0.00933218 . . .sothatR = 0.933 . .. % year ™'

k
k
k
k

If

Thus, a steady growth rate of 0.933 . . . % per year, will result in a popula-
tion growing from 226.55 million to 248.71 million in ten years. To three
significant figures, the average growth rate happens to equal one of the
three growth rates that were calculated earlier.

For linear growth in an interval of time, the average of the populations
at the start and end of the interval is the average population during the
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interval. For exponential growth, the average population in an interval is a
little less than the average of the populations at the start and end of the
interval. For steady growth for the United States from 1980 to 1990, the
average population was 237.46 million.

The formula for calculating the average population, as well as the
keystrokes needed to make some of these calculations with a scientific
calculator are given in the Appendix.

THE DOUBLING TIME

If a quantity is growing 5% per year, its size is increasing by a fixed
fraction (5%) in a fixed length of time (one year), and this is true no matter
where one is on the growth curve. Indeed, this is the condition that defines
steady growth. It then follows that a longer fixed length off time is required
for the growing quantity to increase its size by 100%, which is a doubling
of its size. This longer time is called the doubling time and it is represented
by T,. The doubling time is the time required for N to grow from its initial
size N, to the size 2 N,. From Eq.3,

2N, = Noe® ™

2 =e(kT2).

If we take the natural logarithm of both sides,
In 2 =k Tz

0.693 .../k, and since R = 100 k,
100(.693 .. ) /R
= 69.3/R = 70/R

Il

Equation (6) is known as “The Law of 70.” The equalities of Eq.6 are exact
for continuous compounding. Numbers slightly larger than 69.3 are neces-
sary to calculate the doubling time when the compounding is done annu-
ally or semiannually. Bankers sometimes call this “The Law of 72.”

Table 1 shows doubling times for several rates of steady growth, while
Table 2-shows the size of a growing quantity after several periods of
growth, where the times are expressed in units in the doubling time.
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TABLE 1

Doubling Times for Different Rates of Steady Growth

Percent growth Doubling time
per year in years
Zero Infinity
0.5 139.0
1.0 69.3
1.5 46.2
2.0 34.7
3.0 23.1
4.0 17.3
5.0 13.9
10.0 6.93
20.0 3.47
TABLE 2

Steady Growth for Different Numbers of Doubling Times

Size of the growing

Time, in numbers quantity in multiples
of doubling times of the initial size, N,

Zero 1

1 2

2 4

3 8

4 16

5 32

10 1024

n 2f"

This concept of the doubling time is applicable for an increase in size
by any factor. The time T, for N to increase the size by a factor of 6 is,

Te = (In6)/ k
1.79.../k
179 /R

Il
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When the quantity N is decreasing in size by a constant fraction per
unit time, k is negative, and the doubling time becomes the half-life,
which is the time for N to decay to half of its initial value, N,. The decays
of radioactive materials are characterized by half-lives.

POWERS OF TWO

The concept of the doubling time allows us to make a convenient
reformulation of Eq.3.

(7) N =N,2V™

This equation is very useful because powers of two are easier to calculate
in one’s head than powers of e.

EXAMPLE NO.2.

By what factor does a population increase if it grows 5% per year for 30
years?

The doubling time is approximately (70 / 5) = 14 years.
So(t/T, =30/14 = 2.14 . . . doubling times.
Then N = N, 2 %' which is between 2° = 4 and 2° = 8.

With a scientific calculator, Ny 2%'* = 4.4 . . . N,. (The keystrokes

for this calculation are given in the Appendix)
Thus the factor we are seeking is 4.4 . . .

EXPONENTIAL GROWTH FOR MANY DOUBLING TIMES

An important feature of steady growth is that after long periods of time
(many doubling times), the size of the growing quantity becomes enor-
mous.

For mental calculations, it is convenient to remember that

20 = 1024 = 103

So the growth in 25 doubling times can be estimated as follows:
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2%° =210 x 210 % 25 = 10° x 10® x 32 = 3.2 x 10/

Here is another calculational convenience. Steady growth of n% per
year for 69.3 years (approximately one human lifetime in the western in-
dustrialized nations) results in an overall increase in the size of the growing
quantity by a factor of 2". For example, If a population has steady growth
of 6% per year for 69.3 years, its size will increase by a factor of 2° = 64.
Where one school was needed at the start of the period, 64 schools of the
same size will be needed at the end of the period!

EXAMPLE NO.3

The large numbers that come as a consequence of many doublings are the
basis for mathematical questions such as this. You are to work for 30 days.
You have a choice of a salary of $1000 for all this work, or you can have a
salary that starts at one cent the first day and grows exponentially, dou-
bling every day for the 30 days. Which method of payment would you
prefer?

On the first day your salary, in dollars, is 2°/100 = $0.01

On the second day 2' /100 = $0.02
On the third day | 227100 = $0.04
On the thirtieth day your salary is 2277100

which is $5,368,709.12

It can be shown that the total salary for the 30 days is (2*° —1)/100 which
is $10,737,418.23.

EXAMPLE NO.4

Excluding Antarctica, the land area of the earth is 1.24 x 10'* square
meters. If the population of the earth in 1992 is 5.5 X 10° people, and if
this population continues to grow steadily at 1.7% per year, when would
the population density reach one person per square meter on the dry land
surface of the earth? We can use Eq.5.

t=(1/0.017)In(1.24 x 10" /5.5 x 107
t = 590 years

Since we know that one person per square meter is an impossible popula-
tion density, this arithmetic tells us that world population growth will stop
in a time short compared to 590 years.
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EXAMPLE NO.5

Assume that the world population growth has been steady at 1.7% per year
since the time of Adam and Eve. Calculate when they lived. Again we use
Eq.5. Now N = 5.5 X 10? and N, = 2 (Adam and Eve).

t=(1/0.017)In (5.5 x 10°/2)
t = 1279 years ago, or about 713 A.D.

This establishes that the growth of world population has not been steady;
over most of recent history, the growth has been faster than exponential.
Today’s annual growth rate of approximately 1.7% is much larger than the
average growth rate over all of human history!

The annual growth rate of world population may have been 1.9% in
the 1970s. If this is correct, then the recent period of decline of the popula-
tion growth rate from 1.9% to 1.7% is a period of growth that is slower
than exponential, i.e., the growth rate is declining. Growth that is slower
than exponential, and decreasing to k = 0 and R = 0, is necessary if the
earth is to reach zero population growth.

GENERAL CONCLUSIONS ABOUT GROWTH

1) Whenever a growing quantity increases by a fixed fraction in a fixed
period of time, the growth is steady (exponential).

2) In a modest number of doubling times, the growing quantity will in-
crease enormously in size.

3) As a consequence, the size of things, or the number of things, can
never continue to grow indefinitely.

4) In all systems, growth is a short-term transient phenomenon.

The eminent economist Kenneth Boulding summed it all up when he
is reported to have said, “Anyone who thinks that steady growth can con-
tinue indefinitely is either a madman, or an economist.”

The effect of steady growth in the rate of consumption of finite re-
sources such as fossil fuels has been set forth in detail (Bartlett, 1978).

“Sustained Yield” applies to agricultural resources and describes a sit-
uation in which the rate of use of a renewable resource equals the rate of
biological regeneration through plant growth. “Sustained availability” is a
concept that can be applied to nonrenewable resources. For “sustained
availability,” the rate of consumption of a finite resource must have expo-
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FIGURE 2. At time t = 0 we have two populations of 100 persons each.
The lower curve represents a linear growth of 10 persons per year. The
upper curve represents steady growth of 10% per year. The slope of the
curves represent the rate of change of each population. At time t = 0,
both populations are changing at a rate of 10 people per year, but
because of the steady growth, the rate of change of the upper curve
increases with time.
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nential decay at a certain rate, and this will allow the resource to be avail-
able forever (Bartlett, 1986).

LINEAR GRAPHS

In Fig.2 we see a linear graph of two populations vs. time. Both popu-
lations have the value N = 100 people at the time t = 0. The lower curve
is the curve of linear growth in which the population increases by 10 peo-
ple every year. The equation of this line is

P=P, +St
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where S is the slope, which in this case is S = 10 people per year, and t is
the time in years.

P=100+ 10t

The upper curve is the curve of steady growth in which the population
starts at 100 people and increases at a rate of 10% per year.

P =100 e(0.10 t)

The slope of the curves is the rate of change of the population which
initially is the same for both populations. For the lower curve, the slope is
constant and has the value of 10 people per year at all times. The upper
curve has the same initial slope as the lower curve, but the upper curve
gets steeper as time goes on. By differentiating Eq.3, we can find that the
slope of the upper curve is,

(8) dN /dt = KNy e ®Y = k N in people per year

Because it deals with differentials, Eq.8 is valid only for times much
shorter than the doubling time.

The two curves of Fig.2 are compared in Table 3. We need these two
curves and the data of Table 3 to explain an important puzzle.

TABLE 3

Comparison of Linear Growth and Steady (Exponential) Growth

Linear Growth Steady Growth
Population  Rate of change  Population  Rate of change
At end of Size of population Size of population
the year People People per year  People P/Y at end of yr.
Zero 100 10.0 100 10.0
1 110 10.0 111 11.1
2 120 10.0 122 12.2
3 130 10.0 135 ~ 13.5
4 140 10.0 149 14.9
5 150 10.0 165 16.5
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A PUZZLE

When the population of 100 people grows steadily at the rate of 10%
per year, Table 3 shows that the increase of population in the first year is
not 10 people, but is 11 or 11% of the initial population. How can a 10%
annual growth rate give an annual increase of 11%?

The answer is that at the end of one year, an annual rate of 10%
compounded continuously gives a yield which is the same as an annual
rate of 11% compounded once a year. This explains bank ads for savings

- accounts that give numbers such as these: “Rate, 7.85%; Yield, 8.17%."
The ads tell us that $1 left in the bank for one year at a rate of 7.85%
compounded continuously (growing exponentially) will, at the end of one
year, have the value of $1.0817 because, '

e (00785 > 1) — 1 0817 . ..

This is the same annual yield as one would have at a rate of 8.17% com-
pounded once a year.

Let us extend this to ask, what is the doubling time if one had steady
growth at the rate of 69.3% per year? Eq.6 suggests that T, would be one
year. How can a rate of 69.3% per year give an increase of 100% in one
year? This is a more dramatic example of the puzzle that we just examined
and it has the same explanation. Steady growth at an annual rate of 69.3%
gives an annual yield of 100%.

People sometimes mistakenly suggest that Eq 6 is approximate, and is
valid only for small rates of growth. Equation 6 is exact and correct for all
rates of growth. :

SEMI-LOGARITHMIC GRAPHS

On a semi-logarithmic graph, a straight line represents steady growth.
'This is important in recognizing whether or not a series of data points
represent steady growth. To see this property, let us take the natural log-
arithms of both sides of Eq.3.

InN = (InN,) + kt
If we plot (In N) vs. t we have a straight line whose slope is k and whose

intercept at time t = 0 is (In N).
One uses a scientific calculator to “look up” the values of the log-



182 The Essential Exponential! For the Future of Our Planet

374

POPULATION AND ENVIRONMENT

TABLE 4

Early Data From the U.S. Census

Nat. Log Log to base 10

Year Population In . log

1790 3,929,214 15.1839... 6.5943...
1800 5,308,483 15.4848... 6.7249...
1810 7,239,881 15.7951... 6.8957...
1820 9,638,453 16.0812... 6.9840...
1830 12,860,702 16.3696... 7.1092...
1840 17,063,353 16.6524... 7.2320...
1850 23,191,876 16.9593... 7.3653...

1860 31,443,321 17.2636... 7.4975...

arithms. Natural logarithms are called up using the “In” key, and log-
arithms to the base ten are called up with the “log” key. Either type of
logarithm can be used.

EXAMPLE NO.6

Table 4 gives data on the early history of the census in the United
States showing, for each decade, the population, the natural logarithm of
the population, and the logarithm to the base ten of the population. Two
semi-log graphs are shown in Fig.3. Fig.(3a) shows the natural logarithms
vs. time from Table IV, and Fig.(3b) shows the logarithms to the base ten
vs. time. In both cases the points fall remarkably close to straight lines. The
straight line is a visual clue that the population of the United States grew
steadily (exponentially) in the period from 1790 to 1860.

We can calculate the average growth rate in the 70 year interval from
1790 to 1860.

(1/70) In (31,443,321 /3,929,214)
(1/70)In(8.0024 . . .)

(1770 2.0797 . .. ~
0.0297 . . .orR = 2.97% per year

Il

k
k
k
k

From -Eq.(6), the doubling time, T, = 23.3 years.
The numbers of this example are particularly convenient for a “powers
of two” calculation, which one can do in one’s head. The 1860 population
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FIGURE 3. Linear graphs of the logarithms of the population of the
United States from 1790 to 1860. The upper curve (a) shows natural
logarithms and the lower curve shows logarithms to the base ten. In each
graph the data points fall very close to a straight line, which is visual
evidence that the population growth of the United States in this period
was steady (exponential).
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is very nearly eight times the 1790 population, (8.0024). Eight is three
doublings, which took place in 70 years. So T, = 70 years / 3 = 23 years.

SEMI-LOGARITHMIC GRAPH PAPER

The most convenient way to make a semi-log plot is to use semi-log
graph paper. This paper is printed in such a way that distances on the
vertical scale are proportional to the logarithms of the quantity being plot-
ted, while the horizontal scale is the usual linear scale. This saves one the
need to look up logarithms.

Important properties of semi-log paper are that all of the decades of
change on the vertical scale are represented by the same distance, and
there is no zero on the vertical scale. Thus the distances on the vertical
scale are the same for the numbers from 1 to 10, as from 10 to 100, as
from 100 to 1000, etc. Semi-log graph paper can be purchased at book-
stores that have engineering supplies. In buying semi-log paper, one must
specify how many cycles one wants. “One-cycle” paper will accomodate
one decade of data; “two-cycle” paper will handle two decades of data, as
for example from 1000 to 100,000. “Five-cycle” paper will accommodate
data ranging over five decades.

In the example of United States population from 1790 to 1860, the
population numbers range from 3.9 million to 12.8 million. This will re-
quire two-cycle paper, one cycle for the range 1 to 10 million, and the
second cycle for the range from 10 to 100 million. This graph is shown in
Fig.4. The data points are surrounded by circles which are bracketed by
error bars. In this case the vertical error bars show an arbitrary range of
plus or minus 5%. The point in showing these arbitrary error bars is to
show that on a semi-log graph a fixed fractional error, such as 5% is repre-
sented by a constant vertical distance, no matter where one is on the
curve.

DOUBLING TIMES FROM SEMI-LOG GRAPH PAPER

The graph on semi-log paper allows interpolations and extrapolations.
From Fig.4 one can read that the U.S. population reached 8.0 million at-
the start of the year 1814 and reached the population of 20.0 million about
the date 1845.2. _

The doubling time for the early growth of the U.S. population can be
read directly from a graph on semi-log graph paper, without the need to do
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FIGURE 4. Semi-log graph of the population of the United States for the
period 1790 to 1860, plotted on two cycle semi-log graph paper. Notice
that the distance on the vertical axis from 1 million to 10 million is the
same as the distance from 10 million to 100 million. As in Fig.3, the
points fall nicely on a straight line. The vertical error bars illustrate the
size of an hypothetical uncertainty of plus or minus 5%.
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TABLE 5

Times for a Succession of Doublings
as Read From the Graph of Fig.(4)

Population, in millions Date, years

First Series of Points

5.0 1798.0
10.0 1821.6
20.0 1845.2
Second Series of Points
4.0 1790.5
8.0 1814.0
16.0 1837.6

exponential arithmetic. We need to read the times for a succession of dou-
blings. In Fig.4, we can read two sets of points as shown in Table 5. In the
first set of points, two doublings were observed in the 47.2 years between
1798.0 and 1845.2. Thus one doubling time is (47.2 / 2) = 23.6 years. In
the second set of points, two doublings were observed in the 47.1 years
between 1790.5 and 1837.6. Thus one doubling time is (47.1 / 2) =
23.55 years. The difference between these two results is indicative of the
precision of this graphical method. '

GROWTH FASTER OR SLOWER THAN EXPONENTIAL

Table 6 contains a set of data on world population over a period of
about 400 years (World Almanac, 1992). Figure 5 is a semi-log plot of
these data. From an examination of Fig.5 we can see that from 1650 to
about 1975 the line is curving more steeply upward as time goes on. This
indicates growth which is faster than exponential. Sometime after 1975
and for the projections to the year 2025, the curve is becoming less steep,
which indicates growth that is slower than exponential.

The third column in Table 6 tabulates the average annual growth rates
for each of the intervals in the data, as calculated from Eq.4, while the
fourth column lists the dates of the mid-points of each of the intervals in
the data.

Figure 6 shows a plot of the third and fourth columns of Table 6. Here
we see how the value of R, the rate of growth of world population, has
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. TABLE 6

An Estimate of the Recent History of World Population Growth (8)
with a Projection to the Year 2025

Average rate

Population pop. growth Mid date

Year ; in billions % per year of period
1650 0.550

0.276 1700
1750 0.725

0.483 1800
1850 1.175

0.617 1900
1900 1.60

0.744 1915
1930 2.00

1.23 1940
1950 2.56

1.78 1967.5
1975 4.00

2.27 1977.5
1980 4.48 :

1.83 1983
1986 5.00

1.60. 1988
1990 5.33

1.27 1992.5
1995 5.68

1.52 1997.5
2000 6.13

1.15 2012.5
2025 8.18

changed, as indicated by these data. They indicate that the quantity R
increased to a maximum value of approximately 2% per year around the
year 1975, and then began to decline.

No claim is made that these data are definitive. They are used only as
an illustration. There are large uncertainties in the data on world popula-
tion. It will be good news indeed if further studies confirm that R peaked
and that world population growth has made the transition from growth that

“is faster than exponential to slower than exponential. However, this good
news should not blind us to the fact that zero population growth will not
occur until R = 0.
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FIGURE 5. Semi-log graph of world population from 1650 with
projections to 2025. From 1650 to about 1975 the line is curving
upward, which represents growth faster than exponential. After about
1985, the curve starts becoming less steep, which represents growth
slower than exponential. The curve has an inflection point somewhere
between 1975 and 1985. The point at 1930 is shown with an error bar
of plus or minus 10%, solely to illustrate the size of an uncertainty
of this magnitude.
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FIGURE 6. The rate of growth R of world population in percent per year
as a function of time, as calculated from the data shown in Fig.5. The
points scatter considerably, but they suggest a peak growth rate of about
2% per year was reached around 1975. The uncertainties in these rates of
growth could be as large as plus or minus a half percent.
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The facts of population growth are often misrepresented.

“Human population stayed almost constant at nearly 500 million from
the year 0 to 1500. Then it began rising exponentially. It doubled between
1850 and 1950, doubled again between 1950 and 1990 . . .” (Newsweek,
1992). The fact that the second quoted doubling time is shorter than the
first indicates growth that is faster than exponential. It would be more ac-
curate to say that the world population probably grew very slowly from the
dawn of time up until a few hundred years ago. In the last few centuries
the growth rate has increased rapidly which has resulted in population
growth that has been faster than exponential. The growth rate may have
peaked around 1975 with the consequence that the growth since 1975 has
been slower than exponential.

“The United States is close to ZPG with a fertility rate of 2.1 . . .”
(Popular Science, 1992). The U.S. Census figures for 1980 and 1990 show
that the average growth rate was 0.933% which translates to a net increase
of 2.3 million people each year. The alleged undercount, and illegal immi-
gration could push this annual increase to 3 million a year. The riots in our
large cities underline the fact that the United States is not now able to take
proper care of the present U.S. population, and they emphasize the ur-
gency of reducing the U.S. population growth rate to zero and then to
negative values as rapidly as possible.

189
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A SERIES OF EXAMPLES
EXAMPLE NO.7

In his last night as host of the “Tonight” show, Johnny Carson ob-
served that when the show started on October 1, 1962 the world popula-
tion was 3.1 billion, and as he was signing off on May 22, 1992, he said
the world population was 5.5 billion. What average growth rate of world
population is indicated by these data?

The show ran for 29.64 years, so the value of k is

k=01729.64)In(5.5/3.1) = 0.0193 . . . or R = 1.93% per year

Carson’s figures indicate a growth rate somewhat higher than the 1.7% that
is quoted for 1992.

What was the world population increase in people per day at the start
and end of the run of Johnny Carson’s show as indicated by the data Car-
son cited? For this, we need to know the value of k in units of per day.

k = 0.0193 /365 = 0.0000530 . . . per day

From Eq.8, the rate of change of a populatio.n is k N . This gives us the
following rates of change

Oct, 1962; 0.0000530 x 3.1 x 10° = 1.64 X 10> people per day
May, 1992; 0.0000530 X 5.5 X 10° = 2.91 x 10’ people per day

If we want to know the hourly rate of change, we must have the value of k
in units of per hour.

k = 0.0000530/24 = 2.208 x 10~ ° per hour
Oct. 1962; 2.208 X 107°% x 3.1 x 10° = 6.84 x 10° people per hour
May, 1992; 2.208 X 107° x 5.5 x 10° = 12.1 x 10* people per hour

These numbers show the dramatic changes that have taken place in the
period that one person hosted a popular television, show.

EXAMPLE NO.8

It is reported that “North American waterfowl populations have de-
clined 30% since 1969, mostly due to the loss of wetland habitat” (Clear-
ing House Bulletin, 1992).
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What is the average annual rate of loss which would reduce the water-
fowl population to 70% of its original population in 22 years ? From Eq.4

=(1/22)In(0.70) = (1/22)(-0.356...) = — 0.0162 . . .

The numbers indicate the average rate of habitat loss over the 22 years was
1.62% per year.

A loss rate of 1.62% per year is so small as to seem to be trivial. Yet it
adds up to a very significant loss in a modest number of years.

If this rate of loss continued for 50 years from 1969 to 2019, what
fraction of the waterfow! would remain ?

(N / N ) = e (—0.0162 x 50) = e (—0.81) — 044 o
Only about 44% of the population would remain.
-EXAMPLE NO.9

It is reported that “World food production will have to increase three-
fold in the next 40 years to meet the needs of an estimated nine billion
people” (Gasser & Fraley, 1992).

What is the average annual rate of increase of food production needed
to meet this goal ? Tripling implies that (N / Ny) = 3. Thus, from Eq.4

k= 1(1/40)In3 = 0.0275 or R = 2.75% per year
EXAMPLE NO.10

“The population of fishermen in Colorado has experienced a fourfold
increase in the last 35 years” (Engle, 1992).

What is the average rate of growth of fisherman in Colorado in this
period ? From Eq.4,

k = 1(1/35)In4 = 0.0396 or R = 3.96% per year
T, = 69.3/3.96 = 17.5 years

Notice that the numbers in this example allow us to work this in our head.
The “fourfold increase” is exactly two doublings. Two doublings in 35
years means one doubling in half of this, or 17.5 years. The rate of growth
can be found by dividing 70/ 17.5 = 4% per year.
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EXAMPLE NO.11

In 1983 the ski area of Vail, Colorado celebrated its 20th anniversary,
and for a short period all-day lift tickets were sold at the 1963 price of $5
instead of at the 1983 price of $20. Calculate the average rate of inflation
of the cost of these ski lift tickets, and predict the cost of ski lift tickets at
Vail if this inflation rate continues to 1993 and to 2003.

The numbers in this example allow easy mental calculation. The cost
of lift tickets increased by a factor of four (two doublings) in 20 years. The
doubling time is then 10 years. Then, from Eq.6, 70 / 10 = 7% is the
average annual rate of inflation of lift tickets. If this rate continues, lift
tickets will double in cost every decade; the cost in 1993 will be $40 and
in 2003 it will be $80 . . . The 1992 cost of lift tickets may already have
exceeded $40.

EXAMPLE NO.12

“The population of the three former French colonies of North Africa,
Tunisia, Algeria, and Morocco, has nearly tripled over the past three de-
cades, . . .” (Randal, 1992).

What is the average rate of growth that gives tripling in 30 years ?
From Eq.4,

k = (1/30)In(3) = 0.0366 or R = 3.66% per year

EXAMPLE NO.13

It was noted recently that there are 760,000 lawyers in the United
States in 1992, and this number is increasing at an annual rate of 3.64%. It
was assumed that the annual rate of increase of the population of the
United States is “0.6% (a typical figure),” and it was then calculated that if
these rates continued, lawyers would be half of the United States popula-
tion by the year 2188 (Seligman, 1992). |

The average annual growth rate of the United States population in the
1980s was 0.933%, rather than 0.6%. Let us do the calculation using
0.933%. Since the number of lawyers is for 1992, we must estimate the
United States population in 1992.

Nigop = 248.71 x 10% e 000933 2
= 253.40 X 10° people
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If we assume that the growth rates do not change, the equation for the
population of the United States after 1992 is

Np = 253.40 X 10° e 0009331
and the equation for the number of lawyers in the United States is
N. = 7.60 x 10° e 00364 ¢
The question asks, when will lawyers be half of the population, or when is
N, = N, /22
7.60 X 10° e %°%%* ' = (253.40 x 10°/2) e %0973
This equation must be solved for t.
g (00364 = 000933t = 953 40 x 10°/(2 x 7.60 x 10°)
e %0271t = 1,667 x 10°

0.0271t = In( 1.667 x 10%)
t = 189 years

In that year the population of the United States would be
Np — 253-40 X ]O6e 0.00933 x 189

which is approximately 1.5 billion people, half of whom would be lawyers.

In this example, the population of lawyers is growing faster than the
general population, with the differences in the growth rates being de-
scribed by k = 0.0271 per year. This k has a doubling time (Eq.6) of about
25 years. So after 25 years past the year 2181, the entire United States
population would be lawyers!

These calculations are a nice example of reductio ad absurdum. It was
proposed that the growth rates of the population of people and of lawyers
would remain constant for a long period of time. This led to the conclusion
that the United States population would be 50% lawyers in 189 years. The
absurdity of the conclusion proves the absurdity of the assumption that the
growth rates can remain constant for long periods of time. Thus the term
“sustainable growth” is an oxymoron!
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CONCLUSION

It is hoped that this tutorial, with its worked out numerical examples,
will assist readers in gaining a better understanding of the nature of growth,
and an improved facility in interpreting data on population growth.
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APPENDIX

This appendix contains the formula for the average of a quantity that is
growing exponentially, and the key strokes needed to work a few of the
examples on a “scientific calculator”.

It can be shown that when N grows in accord with Eq.3, the average
value of N in the interval fromt = Otot = Tis

T

Ny =0/T) | edt = (N, 7kT) [ = 1]

[0}
EXAMPLE NO. 1
KEY DISPLAY READS
On , ‘ 0
248.61 | 248.61
Division sign 248.61
226.55 226.55
Equals sign 1.09737...

[n 0.0929197...



